Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 48(4): 554-572.e7, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30745140

RESUMO

Tumor extracellular vesicles (EVs) mediate the communication between tumor and stromal cells mostly to the benefit of tumor progression. Notably, tumor EVs travel in the bloodstream, reach distant organs, and locally modify the microenvironment. However, visualizing these events in vivo still faces major hurdles. Here, we describe an approach for tracking circulating tumor EVs in a living organism: we combine chemical and genetically encoded probes with the zebrafish embryo as an animal model. We provide a first description of tumor EVs' hemodynamic behavior and document their intravascular arrest. We show that circulating tumor EVs are rapidly taken up by endothelial cells and blood patrolling macrophages and subsequently stored in degradative compartments. Finally, we demonstrate that tumor EVs activate macrophages and promote metastatic outgrowth. Overall, our study proves the usefulness and prospects of zebrafish embryo to track tumor EVs and dissect their role in metastatic niches formation in vivo.


Assuntos
Células Endoteliais/citologia , Vesículas Extracelulares/metabolismo , Neoplasias/patologia , Microambiente Tumoral/fisiologia , Animais , Comunicação Celular/fisiologia , Modelos Animais de Doenças , Progressão da Doença , Exossomos/metabolismo , Células Estromais/metabolismo , Peixe-Zebra
2.
Dev Cell ; 45(1): 33-52.e12, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29634935

RESUMO

Metastatic seeding is driven by cell-intrinsic and environmental cues, yet the contribution of biomechanics is poorly known. We aim to elucidate the impact of blood flow on the arrest and the extravasation of circulating tumor cells (CTCs) in vivo. Using the zebrafish embryo, we show that arrest of CTCs occurs in vessels with favorable flow profiles where flow forces control the adhesion efficacy of CTCs to the endothelium. We biophysically identified the threshold values of flow and adhesion forces allowing successful arrest of CTCs. In addition, flow forces fine-tune tumor cell extravasation by impairing the remodeling properties of the endothelium. Importantly, we also observe endothelial remodeling at arrest sites of CTCs in mouse brain capillaries. Finally, we observed that human supratentorial brain metastases preferably develop in areas with low perfusion. These results demonstrate that hemodynamic profiles at metastatic sites regulate key steps of extravasation preceding metastatic outgrowth.


Assuntos
Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Adesão Celular , Hemodinâmica , Neoplasias Pulmonares/patologia , Melanoma/patologia , Células Neoplásicas Circulantes/patologia , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias da Mama/metabolismo , Ciclo Celular , Circulação Cerebrovascular , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células Neoplásicas Circulantes/metabolismo , Estudos Retrospectivos , Células Tumorais Cultivadas , Peixe-Zebra
3.
Mol Biol Cell ; 29(4): 435-451, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29237817

RESUMO

Hemidesmosomes (HDs) are epithelial-specific cell-matrix adhesions that stably anchor the intracellular keratin network to the extracellular matrix. Although their main role is to protect the epithelial sheet from external mechanical strain, how HDs respond to mechanical stress remains poorly understood. Here we identify a pathway essential for HD remodeling and outline its role with respect to α6ß4 integrin recycling. We find that α6ß4 integrin chains localize to the plasma membrane, caveolae, and ADP-ribosylation factor-6+ (Arf6+) endocytic compartments. Based on fluorescence recovery after photobleaching and endocytosis assays, integrin recycling between both sites requires the small GTPase Arf6 but neither caveolin1 (Cav1) nor Cavin1. Strikingly, when keratinocytes are stretched or hypo-osmotically shocked, α6ß4 integrin accumulates at cell edges, whereas Cav1 disappears from it. This process, which is isotropic relative to the orientation of stretch, depends on Arf6, Cav1, and Cavin1. We propose that mechanically induced HD growth involves the isotropic flattening of caveolae (known for their mechanical buffering role) associated with integrin diffusion and turnover.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Caveolina 1/metabolismo , Hemidesmossomos/metabolismo , Integrina beta4/metabolismo , Queratinócitos/metabolismo , Fator 6 de Ribosilação do ADP , Linhagem Celular , Membrana Celular/metabolismo , Hemidesmossomos/ultraestrutura , Humanos , Microscopia Eletrônica de Transmissão , Microscopia Imunoeletrônica
4.
Intravital ; 5(1): e1168553, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28243519

RESUMO

Skeletal muscle structure and function are altered in different myopathies. However, the understanding of the molecular and cellular mechanisms mainly rely on in vitro and ex vivo investigations in mammalian models. In order to monitor in vivo the intracellular structure of the neuromuscular system in its environment under normal and pathological conditions, we set-up and validated non-invasive imaging of ear and leg muscles in mice. This original approach allows simultaneous imaging of different cellular and intracellular structures such as neuromuscular junctions and sarcomeres, reconstruction of the 3D architecture of the neuromuscular system, and video recording of dynamic events such as spontaneous muscle fiber contraction. Second harmonic generation was combined with vital dyes and fluorescent-coupled molecules. Skin pigmentation, although limiting, did not prevent intravital imaging. Using this versatile toolbox on the Mtm1 knockout mouse, a model for myotubular myopathy which is a severe congenital myopathy in human, we identified several hallmarks of the disease such as defects in fiber size and neuromuscular junction shape. Intravital imaging of the neuromuscular system paves the way for the follow-up of disease progression or/and disease amelioration upon therapeutic tests. It has also the potential to reduce the number of animals needed to reach scientific conclusions.

5.
Biomed Res Int ; 2014: 927841, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24818161

RESUMO

The human sperm head vacuoles and their role in male infertility are still poorly understood. The aim of this study was to identify the clinical and ultrastructural features of human sperm head vacuoles in men included in the in vitro fertilization programme: men with normal (normozoospermia) and impaired sperm morphology (teratozoospermia). The sperm samples were observed under 6000-time magnification using motile sperm organelle morphology examination (MSOME). The proportion of sperm with head vacuoles was evaluated and related to the outcome of in vitro fertilization. The sperm of men with impaired sperm morphology was characterized by a higher proportion of sperm head vacuoles. The sperm head vacuoles were related to impaired semen quality (sperm concentration, motility, and morphology) but were not influenced by male factors (semen volume, height, age, weight, or body mass index). Moreover, sperm head vacuoles were related to impaired fertilization rate merely after classical in vitro fertilization (IVF), while there was no relation to pregnancy. In a subgroup of men, the sperm was fixed and observed by transmission electron microscopy (TEM). The ultrastructural study revealed that sperm head vacuoles are large nuclear indentations of various sizes and positions, packed with membranous material organized in membrane whorls (MW).


Assuntos
Fertilização in vitro , Cabeça do Espermatozoide/ultraestrutura , Vacúolos/ultraestrutura , Humanos , Masculino , Motilidade dos Espermatozoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...